
Bridge: A Leak-Free Hardware-Software Architecture
for Parallel Embedded Systems

Gongqi Huang
Princeton University

Princeton, USA
gongqih@princeton.edu

Leon Schuermann
Princeton University

Princeton, USA
lschuermann@princeton.edu

Amit Levy
Princeton University

Princeton, USA
aalevy@princeton.edu

Abstract
Embedded and Internet of Things (IoT) devices are increas-
ingly ubiquitous and process increasingly sensitive data. As a
result, such devices must uphold security in addition to func-
tional safety to avoid unintended information leaks. To react
this change of environment, developers deploy conventional
mechanisms such as memory isolation and priority schedul-
ing to achieve aforementioned goals. While such techniques
are resilient against attacks that endanger a device’s func-
tional safety, they are less eective in maintaining security as
they ignore information leaks through timing channels, such
as through scheduling policy and implicit microarchitectural
state. Recent advances in timing-safe systems, in turn, limit
themselves to time-shared systems without parallelism. This
is problematic in the face of responsiveness and real-time
constraints which are often found in embedded devices.

This paper explores timing-safety in the space of parallel
systems. We introduce Bridge, a new system architecture
featuring multiple tasks with dierent security concerns that
can execute in parallel without leaking information due to
timing interference.

CCS Concepts: • Security and privacy → Operating sys-
tems security; • Computer systems organization→ Em-
bedded systems; Multicore architectures.
ACM Reference Format:
Gongqi Huang, Leon Schuermann, and Amit Levy. 2024. Bridge:
A Leak-Free Hardware-Software Architecture for Parallel Embed-
ded Systems. In Kernel Isolation, Safety and Verication (KISV ’24),
November 4–6, 2024, Austin, TX, USA. ACM, New York, NY, USA,
7 pages. hps://doi.org/10.1145/3698576.3698765

1 Introduction
Embedded and Internet of Things (IoT) devices are increas-
ingly ubiquitous and connected. For example, connected

This work is licensed under a Creative Commons Attribution International 
4.0 License.
KISV ’24, November 4–6, 2024, Austin, TX, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1301-9/24/11
https://doi.org/10.1145/3698576.3698765

cars stream metrics to manufacturers to schedule predictive
maintenance appointments, and personal medical devices
constantly monitor a user’s important health parameters
while informing their medical provider of any deviations.
With increasing connectivity and growing sensitivity of pro-
cessed data, it is clear that these devices must no longer just
uphold functional safety—security, such as being resilient
against external attacks, and privacy, by avoiding leakage of
personal information, become equally important goals.

Developers of embedded systems react to this changed en-
vironment by strengthening their system’s security through
a variety of mechanisms. Apart from software fortication
eorts like code auditing, fuzzing, and formal verication,
many systems adopt a fundamentally new architecture that
divides their responsibilities into multiple, independent and
isolated security domains. For example, a personal health
monitor may be implemented as two separate processes:
one running its sensor evaluation and alerting logic, and an-
other implementing its wireless communication subsystem.
In practice, these architectures are implemented using well-
established techniques of computer systems to meet security
and functional safety requirements, such as using memory
isolation and priority scheduling. Modern and secure embed-
ded operating systems help enforce these policies [11, 21, 22].

While these changes increase a device’s resilience against
attacks that endanger their safety, they are less eective
when it comes to maintaining privacy or secrecy. All of
fuzzing, verication, and compartmentalization test andmodel
explicit data ows and permissions in these systems, but do
not take into account that their behavior may also leak sen-
sitive information through implicit channels. This deciency
is often rooted in the implementation of these basic isolation
mechanisms themselves: for instance, a memory isolation
primitive does not address microarchitectural timing chan-
nels in, e.g., caches, and a system’s high-level scheduling
policy can reveal how much time a computation over secret
data takes. Spectre and Meltdown are prominent examples
of such hardware-based information leaks [9, 12].

Recent contributions focus on providing leak-free or timing-
safe isolation across security domains within time-shared
systems [5, 14, 20]. These approaches extend a system’s se-
curity guarantees by reasoning about implicit information
leaks in addition to explicit data ows. For instance, seL4
extends classical memory isolation (for functional safety)

16



KISV ’24, November 4–6, 2024, Austin, TX, USA Gongqi Huang, Leon Schuermann, and Amit Levy

with additional time protection mechanisms to eliminate
both scheduling and microarchitectural timing channels.
While these approaches are promising for upholding se-

crecy in time-shared systems, they compromise on some
properties important for embedded systems. For instance,
such leak-free systems often employ a scheduling policy that
time-shares hardware according to xed scheduling quanta
or prioritizes less-secret security domains. This can be prob-
lematic in the face of real-time requirements. And impor-
tantly, these solutions do not translate beyond time-shared
hardware towards parallel systems, where contention due
to concurrent hardware accesses introduces an unmitigated
point of information leakage.
In this paper, we explore the space of leak-free, parallel

systems. We design Bridge, a new system architecture for
devices featuring multiple security domains that can execute
simultaneously. In this architecture, security domains can
remain responsive while avoiding resource starvation in the
presence of external events. To avoid timing channels in
asynchronous cross-domain interactions of such a parallel
system, Bridge introduces a leak-free inter-core message
passing protocol. Notably, Bridge does not rely on its pro-
cesses to provide any security or secrecy guarantees. Instead,
we introduce a Trusted Computing Base (TCB) that main-
tains secrecy while supporting arbitrary applications.

2 Threat Model
Bridge maintains its security even in the face of adversarial
applications. In particular, Bridge ensures that, apart from a
controlled declassication mechanism, any secret data main-
tained within a high-security domain must not be exposed
to other low-security domains or external observers.
We assume that an attacker seeks to expose secret data

from a high-security domain. Such an attacker is assumed
to not have direct control over what data can be declassied
but otherwise full control over this domain. Furthermore, an
attacker may observe cycle-level timing behavior of applica-
tions executing in other low-security domains. For this, an
attacker can either take over control of applications running
in these low-security domains, or monitor behavior of low-
security domain applications through external interactions
with peripherals (like radio transmissions).

Bridge does not explicitly concern itself with orthogonal
implicit channels, such as power, temperature, or electro-
magnetic information leaks [1, 8, 13, 19]. Instead, Bridge is
complimentary to existing mitigations.

3 Design
In this section, we present the Bridge system architecture.
Key to this architecture is Bridge’s leak-free inter-core mes-
sage passing protocol. We rst reason about the implications
for timing channels in a multi-core environment. Based on
these ndings, we construct Bridge’s inter-core message

passing protocol. Finally, we present a system architecture
encompassing this protocol and using it for cross-domain
communication.

3.1 Leak-Free Inter-Core Communication
To establish a leak-free inter-core communication channel,
we rst have to reason about how existing, time-shared sys-
tems can be made leak-free. In time-shared systems, hard-
ware is shared between dierent tasks, potentially running
within dierent security domains. These domains may either
be mutually distrustful, in which case no communication
between any two such domains is allowed, or they may exist
in a so-called low–high relation: in this case, information can
ow from a low-secrecy to a high-secrecy domain, but not
the other way around [4].
In addition to explicit communication, leak-free systems

also consider implicit information exchanged through tim-
ing variations. For example, when a system uses a dynamic
scheduling policy that is inuenced by the runtime behavior
of a task, these schedule dierences can then be observed
by tasks in other security domains. Such an implicit chan-
nel is mitigated through one of two approaches: either the
system uses a xed schedule that does not change depend-
ing on these dynamic factors, or it uses a scheduling policy
that reects the system’s security policy. Such a policy must
encompass the relations of security domains: for instance,
timing variations of a security domain must not be exposed
to any mutually distrustful domains. Instead, timing varia-
tions of one low domain may only be exposed to any higher
domains. In practice, this implies a priority schedule where
low-secrecy tasks take precedence over higher-secrecy tasks.
Apart from changes to the system’s high-level schedule,

access to time-shared hardware can implicitly leak informa-
tion about tasks’ behavior across security domains. This is
because hardware contains state inuenced by past system
behavior, and observable through future system behavior.
Such state is ubiquitous throughout hardware; examples
being CPU registers, caches, and peripheral state. In a time-
shared hardware system, this issue can be mitigated by ex-
plicitly ushing all such observable state between switches
of security domains in order to reset the hardware into a
well-known state. Crucially, this is enabled by the fact that
there is a dened point in time between the execution of two
security domains—namely a context switch—where neither
domain can observe such hardware state.
Unfortunately, this primitive breaks down once two se-

curity domains have concurrent access to shared hardware.
For instance, a bus arbiter controlling access to a shared
RAM block must maintain some state for correct behavior.
When a CPU core changes security domains, this hardware
state cannot be ushed unconditionally as another core may
access this component in parallel. Furthermore, stalling the
rst CPU core because of concurrent accesses by a second

17



Bridge: A Leak-Free Hardware-Soware Architecture for Parallel Embedded Systems KISV ’24, November 4–6, 2024, Austin, TX, USA

core will implicitly leak timing information towards the rst
core, and thus establish an implicit information ow.
Naïvely, we can ensure timing-safety in a parallel sys-

tem by establishing a shared-nothing architecture—when no
shared hardware state is accessible from two independent
CPU cores, then no such state can implicitly communicate
information between these cores. Unfortunately, such an
architecture is overly restrictive for practical systems: it can
only model mutually distrustful security domains. However,
practical systems will need to declassify some sensitive infor-
mation in a controlled (e.g., encrypted or obfuscated) manner
and provide it to lower or distrustful counterparts. With no
communication channel, no controlled exposure is possible.
Instead, the Bridge system architecture takes a shared-

nothing multi-core architecture and adds a single, leak-free
communication channel between two otherwise indepen-
dent and isolated cores. By ensuring that this channel is
timing-safe and adheres to the system’s security policy, we
guarantee—by construction—that the overall system is leak-
free as well. Next, we describe the construction of this pro-
tocol and map it onto hardware and software primitives.

3.2 The Bridge Inter-Core Message Passing Protocol
In Bridge, a task can declassify data towards another task,
potentially running in a dierent security domain. Unfortu-
nately, delivering a message from one task to another task
carries not just its intended data: the message’s delivery
time further exposes information about the sender’s secret-
dependent runtime behavior to the receiver. This is problem-
atic, as the message’s contents have been explicitly declassi-
ed, but not the additional timing information, violating the
system’s security policy.

A naïve solution to this problem is to unconditionally de-
liver messages at a xed time interval. However, this is a
particularly inexible policy: the rate of declassied informa-
tion cannot be adjusted at runtime. Furthermore, the system
needs to send messages even when no new information can
be declassied, leading to extraneous resource utilization.
Instead, we propose a dierent policy: Bridge takes ad-

vantage of the fact that in leak-free systems, some communi-
cation patterns are still allowed across security domains. In
particular, any low-secrecy domain—by denition—can arbi-
trarily deliver information to a high-secrecy domain. Thus, it
is perfectly ne for a low-secrecy task to expose information
about its timing to a high-secrecy task, for instance by use of
an asynchronous and uncoordinated inter-core interrupt, so
long as this mechanism does not also act as a backchannel.

In Bridge, we use this primitive to establish a higher-level
communication channel with request–response semantics.
In particular, we use inter-core interrupts to signal a request
from a low-secrecy task, running on one CPU core, to another
high-secrecy task, running on a dierent CPU core. However,
we must avoid introducing an implicit backchannel, such
as a response-ready signal to the low-secrecy core. Instead,

domhigh

domlow

schedule

Figure 1. Parallel accesses to shared hardware can leak tim-
ing information. In this example, a low-secrecy domain can
observe the presence of a parallel access from a high-secrecy
domain because of a delay in its own access.

we allow the low-secrecy core to retrieve the response at
any time. Because the low-secrecy task governs when the re-
sponse will be retrieved, we must additionally avoid leaking
information on whether the high-secrecy task was even able
to prepare a complete response before it is retrieved. This is
because the time it takes to prepare a response may depend
on other secrets in the high-secrecy domain.
To mitigate this issue, when the high-secrecy task is un-

able to prepare a response in time, Bridge returns a fab-
ricated response based on an application-dened response
policy. In particular, the policy species how to construct
a fabricated response that matches both the application’s
functional safety and security semantics. The application
can choose to eliminate this leak by acquiring a policy that
fabricates a response that is indistinguishable from a proper
response. When eliminating such leak endangers the applica-
tion’s functional safety, the application can explicitly choose
to leak this information by returning a default response.
We thus far only established a signaling mechanism be-

tween cores. To realize this channel, we need to solve two ad-
ditional issues. First, passing actual declassied data requires
some shared storage, accessible to low- and high-secrecy
domains. This risks introducing new timing channels due
to parallel accesses to this hardware. Furthermore, handling
inter-core signals must not be delayed by the high-secrecy
task. This is problematic in the presence of critical sections.
Over the remainder of this section, we present solutions to
each of these issues in detail.
Communication as Ownership Transfer. One funda-
mental issue of existing concurrently-accessed hardware is
that it incorporates a predened scheduling policy which
is agnostic to the system’s security policy. For instance, as
illustrated in Figure 1, such a scheduling policy may choose
to schedule an event from a high-secrecy domain in the pres-
ence of two parallel events from both low- and high-secrecy
domains. This leaks information. Existing approaches that
share hardware components force all parallel accesses to be
from the same security domain, or require specialized hard-
ware that adheres to a xed scheduling policy, independent
of runtime behavior [5].

18



KISV ’24, November 4–6, 2024, Austin, TX, USA Gongqi Huang, Leon Schuermann, and Amit Levy

Bridge circumvents these limitations by ensuring that a
resource is accessed by at most one security domain at a time.
Bridge models cross-domain communication as moving re-
sources between security domains, and using their inherent
state to exchange data. Bridge then enforces that any re-
source is exclusively owned by a single security domain, and
only accessed by its current owner.
We can use these semantics to build a request–response

communication scheme as illustrated in Figure 2: rst, a low-
secrecy requestor uses its currently owned shared resource
to prepare a request payload. Because it holds ownership
over the shared resource, it can arbitrarily modify its state.
It then moves this resource towards the high-secrecy task.
Over the time that the high-secrecy task holds ownership
of this resource, it can read the request payload, perform re-
quested computations, and write results back to the resource.
Recall that the high-secrecy task has no way to signal the
completion of this request. Instead, the low-secrecy task will
estimate the completion time of a request, and reclaim own-
ership of the shared resource once this time is reached. It can
then read the high-secrecy task’s response from the resource.
With this communication scheme, Bridge sidesteps any

parallel accesses to shared hardware. Furthermore, so long as
hardware-components return to a well-dened, single state
after all accesses complete, it is safe to move such hardware
between security domains. Thus, we can safely apply this
policy onto a plethora of existing hardware components,
such as a shared memory bus and interconnects.
ResourceReclamationwithout Backchannels. TheBridge
communication scheme must further avoid backchannels
as part of its inter-core signaling mechanism. For instance,
this manifests in the low-secrecy task actively reclaiming
ownership of the shared resource, regardless of whether the
high-secrecy task has nished preparing a response. This
reclamation is realized through a signal delivered from the
low-secrecy to high-secrecy core. However, this poses an-
other problem: how can the low-secrecy core know whether
and when the high-secrecy core has given up acccess over
this resource, without creating a backchannel?

This issue is exacerbated by the fact that the low-secrecy
task has no knowledge over the runtime behavior of the high-
secrecy task. For instance, the high-secrecy task may have
entered a critical section while receiving the aforementioned
signal. In this case, handling of the signal will be delayed until
after the high-secrecy task exits the critical section. More
generally, practical systems are not preemptible in every
clock cycle; they either feature critical sections in software,
or stall CPUs on interrupt entry1.

To work around this issue, Bridge analyzes the worst-case
execution time (WCET) of all non-preemptible critical sec-
tions of the high-secrecy codebase. As described in Section

1To illustrate, even Linux’s PREEMPT_RT_FULL preemption model does
not allow reentrance in top half interrupt handlers [17].

domlow

domhigh

Figure 2. A request–response communication scheme with
ownership transfer between security domains. Solid lines
represent ownership over a shared resource. Ownership is
moved through an initial operation by the low-secrecy do-
main and later reclaimed using a second operation. This
scheme ensures the resource is only accessed by at most one
security domain at a time without backchannels.

3.3, our system does not allow application code to introduce
new critical sections, and we thus only need to analyze a
small, well-dened TCB. WCET provides with us an overes-
timate of both the maximum time it takes for a high-secrecy
domain to start handling a cross-domain signal (taking prece-
dence over all other signals), referred to as

delay = max∈CriticalSectionsWCET(),
as well as the time it takes to complete handling this signal

handle = WCET(inter-core signal handler) .
Thus, the minimum wait-time of a low-secrecy task before
it can assume ownership after a reclamation request is

wait = delay + handle .

We argue that a WCET analysis is practical in this setting
as it is required only for critical sections. Notably, these sec-
tions only require local reasoning as they are single-threaded
and do not involve concurrent accesses: the ownership trans-
fer guarantees exclusive access to the shared hardware for its
respective current owner. This reduces the amount of code
to verify and also eliminates sources of timing interference.

We now proceed to outline Bridge’s leak-free inter-core
communication protocol in detail.
The Bridge Protocol. Figure 3 illustrates the Bridge pro-
tocol. Initially, the low-secrecy core holds ownership over
the shared memory block. 1 The low-secrecy core rst pre-
pares a request in the shared memory. When the request
is ready to be sent, it 2 releases its ownership over the
shared memory and 3 sends a signal to the high-secrecy
core. 4 Upon receiving the signal, the high-secrecy core
acquires ownership over the memory, at which point it is
safe for the core to access it. The high-secrecy core reads the
request from the shared memory, processes it, and writes
back a response. 5 Following an initial grace period of wait,
the low-secrecy core may—at any time—send a reclamation
request. The high-secrecy core is guaranteed to handle this
reclamation request within wait. During this time, the high-
secrecy core will nish execution of any prior critical section,
6 nalize its response, and 7 release ownership over the

19



Bridge: A Leak-Free Hardware-Soware Architecture for Parallel Embedded Systems KISV ’24, November 4–6, 2024, Austin, TX, USA

corelow corehigh

1 Place message in
shared memory

2 Release ownership
over shared memory

3 Signal corehigh
4 Acquire ownership
of shared memory

5 Signal corehigh
6 Finalize response in
shared memory

7 Release ownership
of shared memory

8 Re-acquire owner-
ship of shared memory





Figure 3. The Bridge protocol. Solid lines indicate owner-
ship over a shared resource.

memory block. 8 Finally, the low-secrecy core is able to
process this response. Note that the low-secrecy core may
carry out other computations between steps 3 and 8 .

3.3 The Bridge System Architecture
Thus far, we focused our design on the key mechanism used
to achieve Bridge’s leak-free property in a parallel system:
its inter-core communication protocol. This protocol makes
a set of assumptions about its surrounding system behavior,
which can be realized through a combination of hardware
and software modications. We conclude our design by pre-
senting a high-level overview of one particular system ar-
chitecture meeting the Bridge protocol requirements. Our
system architecture places an emphasis on staying close to
existing hardware components and congurations, moving
most responsibilities into a software-based TCB.
Hardware Architecture. Figure 4 depicts a simplied view
of Bridge’s hardware architecture. As described above, we
base Bridge on a shared-nothing architecture featuring in-
dependent CPU cores with a dedicated set of peripherals.
These CPU cores further feature a signal delivery mecha-
nism, such as inter-core interrupts. We only require that
low-secrecy cores are able to send signals to high-secrecy
cores. Apart from their dedicated peripherals, both cores

Low-Secrecy
CPU Core

Mux

Bus Arbiter

Shared
RAM

Private
RAM

Wireless
Radio

High-Secrecy
CPU Core

Mux

Private
RAM

Heart Rate
Monitor

Inter-Core Interrupt

Figure 4. A simplied Bridge hardware architecture. The
system features multiple, independent CPU cores execut-
ing dierent security domains. Each core has a dedicated
memory bus, RAM and peripherals. Both cores further have
access to a shared memory region, mediated through a bus
arbiter, and raise asynchronous inter-core interrupts at the
other core. Concurrent accesses to the shared RAM through
its arbiter can result in contention, which Bridge avoids.

have access to a shared resource for communication (such as
a shared RAM block). Simultaneous access to this resource
may result in contention, which Bridge avoids. Our software
TCB ensures that only the current owner of a resource can
access it, instead of mediating accesses in hardware.
While Figure 4 depicts an architecture where CPU cores

share no peripherals and no memory buses except for the
single, shared RAM block, in practice we can be more permis-
sive: Bridge only requires security domains to not interfere
with each other when performing memory or peripheral ac-
cesses. We thus solely have to ensure that cores do not experi-
ence contention while accessing their designated peripherals.
Furthermore, when performing inter-core communication as
part of Bridge’s protocol, a resource is temporarily moved
between two cores. Thus, this invariant must also hold under
this temporary ownership change.

These constraints are practical. For instance, the Raspberry
Pi RP2040 ARM Cortex-M0+ SoC features two CPU cores,
connected to the chip’s peripherals using a fully-connected
crossbar, with a dedicated upstream port per CPU core [16].
Memory is divided into individual RAM blocks attached to
this crossbar, and can thus be logically moved in between
cores without access contention. The crossbar further fea-
tures sucient downstream ports to logically divide other
peripherals in the system between the two cores without
contention2. Furthermore, the RP2040 architecture features a
synchronous cross-core mailbox infrastructure which can be
set to take priority over any other interrupts, and thus meets
the requirements of the Bridge’s signaling mechanism. As
such, this chip meets all of Bridge’s hardware requirements.

2In the case of the RP2040, this is not possible for peripherals that are
attached to APB Bridge component [16] which acts as a bus arbiter with a
single upstream port.

20



KISV ’24, November 4–6, 2024, Austin, TX, USA Gongqi Huang, Leon Schuermann, and Amit Levy

Software Architecture. Bridge’s software is architected as
a shared-nothing multi-kernel system [2]. Each core runs its
own kernel instance, and shares only a buer located in the
shared RAM with other instances. Each instance is further
assigned to a static security domain. Userspace processes
are untrusted and isolated by the kernel, and can always be
preempted—userspace cannot introduce new critical sections
that would need to be subject to WCET analysis. Further-
more, the kernel must handle the request–response signal
immediately (or after returning from any currently entered
critical section). In practice, we achieve this by having cross-
core interrupts take precedence over all other events.
Bridge does not mandate that a kernel instance use a

particular scheduling policy or isolationmechanism amongst
its local processes. Any interference between local resources
is acceptable as they belong to the same security domain.

4 Current State
We validate the feasibility and the correctness of Bridge’s
protocol and system architecture through a proof of concept
implementation. We model our system’s hardware using a
dual-core RISC-V SMP cluster virtualized in QEMU. We base
our TCB software on the TockOS kernel [11]. Tock is a secure
and lightweight embedded operating system that supports
running untrusted userspace applications in a single-core
platform. To support execution on an SMP CPU cluster, we
extend Tock to run multiple kernel instances in a multi-
kernel conguration (adding approx. 2300 LOC). We further
implement Bridge’s leak-free inter-core message passing
protocol to facilitate communication between two Tock ker-
nel instances in a low–high security domain relation (adding
approx. 300 LOC). This prototype implementation is able
to successfully send a request from a low-secrecy kernel
instance to a high-secrecy kernel instance, and return a re-
sponse as part of the corresponding reclamation request.

Our prototype further conrms that existing memory pro-
tection infrastructure, such as RISC-V’s Physical Memory
Protection (PMP), is suciently expressive to model our own-
ership and move semantics. Finally, our analysis shows that
there are only four critical sections in the existing Tock code-
base which are all suitable for WCET analysis. Integrating
the Bridge protocol does not add a new critical section, and
only extends Tock’s top-half trap handler.

At this point, we have not yet carried out the required au-
tomated WCET analysis of our implementation but instead
used conservative estimates. Furthermore, we are currently
transitioning this system towards an SoC hardware cong-
uration featuring two VexRiscv CPU cores, which can be
synthesized for FPGAs or used in a cycle-accurate simulator
to verify Bridge’s timing guarantees [15].

Nonetheless, these initial results are promising and show
that Bridge’s system architecture and the requirements of
its protocol are feasible.

5 Related Work
Bridge builds on a wide range of related work. Its foundation
is rooted in the concepts of information ow modeling [4].
We borrow its notion of high- and low-secrecy labels and
relations and map them onto our security domains. In partic-
ular, we reason about both explicit data and implicit timing
interference as information ows between security domains.
Timing-safe time-shared systems. Prior work addresses
Bridge’s problem domain in the context of non-parallel time-
shared systems. For example, the seL4 microkernel has been
extended with time protection mechanisms to eliminate mi-
croarchitectural timing channels by resetting hardware state
when switching between security domains and using a xed
time domain scheduler to prevent high-level timing channels
across security domains [5, 14, 20]. The VAX/VMM security
kernel implements a so-called lattice process scheduler that
ushes cache state only when necessary, i.e., when switch-
ing from a high-secrecy process to a low-secrecy process [7].
The lattice scheduler also eliminates scheduling-based tim-
ing channels by only allowing a high-secrecy process to run
so long as no lower-secrecy processes are schedulable.
Timing-safe parallel systems. To avoid leaking informa-
tion due to both microarchitectural state and contention
while accessing shared resources, core slicing runs mutually
distrustful workloads on individual, independent CPU cores,
memory, and peripherals [24]. However, this work does not
permit direct communication between these domains. Fur-
thermore, it does not explicitly consider potential timing
interference due to shared components in the underlying
hardware, for instance, when each domain accesses its dedi-
cated peripherals through a shared memory bus.
Other approaches.The emergence of side-channels inwidely
used hardware has further prompted the development of var-
ious policy-agnostic mitigations. For instance, a large class of
work introduces additional entropy into a system to prevent
meaningful extraction of information, without addressing
the underlying channels [6, 23]. Other approaches use time
quantization to provide an upper bound on the amount of
information that can be extracted, while often compromising
eciency or responsiveness [3, 10, 18].

6 Conclusion
In this paper, we explore the space of timing-safe parallel
systems. To that end, we present Bridge, a new system ar-
chitecture for parallel tasks running across multiple security
domains. This architecture allows maintaining responsive-
ness and avoids resource starvation of one security domain
in the presence of external events towards other security do-
mains. Our initial prototype demonstrates its feasibility and
represents a promising step towards a complete implemen-
tation. In the future, we hope to extend Bridge’s principles
towards more dynamic and complicated security policies.
We view Bridge as a stepping stone towards this direction.

21



Bridge: A Leak-Free Hardware-Soware Architecture for Parallel Embedded Systems KISV ’24, November 4–6, 2024, Austin, TX, USA

References
[1] Dakshi Agrawal, Bruce Archambeault, Josyula R Rao, and Pankaj

Rohatgi. 2003. The EM side—channel (s). In Cryptographic Hardware
and Embedded Systems-CHES 2002: 4th InternationalWorkshop Redwood
Shores, CA, USA, August 13–15, 2002 Revised Papers 4. Springer, 29–45.

[2] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,
Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and
Akhilesh Singhania. 2009. The multikernel: a new OS architecture for
scalable multicore systems. In Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles (Big Sky, Montana, USA)
(SOSP ’09). Association for Computing Machinery, New York, NY, USA,
29–44. hps://doi.org/10.1145/1629575.1629579

[3] David Cock, Qian Ge, Toby Murray, and Gernot Heiser. 2014. The
Last Mile: An Empirical Study of Timing Channels on seL4. In Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and Com-
munications Security (Scottsdale, Arizona, USA) (CCS ’14). Associa-
tion for Computing Machinery, New York, NY, USA, 570–581. hps:
//doi.org/10.1145/2660267.2660294

[4] Dorothy E. Denning. 1976. A lattice model of secure information ow.
Commun. ACM 19, 5 (may 1976), 236–243. hps://doi.org/10.1145/
360051.360056

[5] Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser. 2019. Time
Protection: The Missing OS Abstraction. In Proceedings of the Four-
teenth EuroSys Conference 2019 (Dresden, Germany) (EuroSys ’19). As-
sociation for Computing Machinery, New York, NY, USA, Article 1,
17 pages. hps://doi.org/10.1145/3302424.3303976

[6] W.-M. Hu. 1991. Reducing timing channels with fuzzy time. In Proceed-
ings. 1991 IEEE Computer Society Symposium on Research in Security
and Privacy. 8–20. hps://doi.org/10.1109/RISP.1991.130768

[7] W.-M. Hu. 1992. Lattice scheduling and covert channels. In Proceedings
1992 IEEE Computer Society Symposium on Research in Security and
Privacy. 52–61. hps://doi.org/10.1109/RISP.1992.213271

[8] Michael Hutter and Jörn-Marc Schmidt. 2014. The Temperature
Side Channel and Heating Fault Attacks. In Smart Card Research
and Advanced Applications: 12th International Conference, CARDIS
2013, Berlin, Germany, November 27-29, 2013. Revised Selected Pa-
pers (Berlin, Germany). Springer-Verlag, Berlin, Heidelberg, 219–235.
hps://doi.org/10.1007/978-3-319-08302-5_15

[9] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. 2019. Spectre Attacks:
Exploiting Speculative Execution. In 40th IEEE Symposium on Security
and Privacy (S&P’19).

[10] Boris Köpf andMarkus Dürmuth. 2009. A Provably Secure and Ecient
Countermeasure against Timing Attacks. In 2009 22nd IEEE Computer
Security Foundations Symposium. 324–335. hps://doi.org/10.1109/
CSF.2009.21

[11] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Gin, Pat
Pannuto, Prabal Dutta, and Philip Levis. 2017. Multiprogramming a
64kB Computer Safely and Eciently. In Proceedings of the 26th Sym-
posium on Operating Systems Principles (Shanghai, China) (SOSP ’17).
Association for Computing Machinery, New York, NY, USA, 234–251.
hps://doi.org/10.1145/3132747.3132786

[12] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. 2018. Meltdown: Reading
Kernel Memory from User Space. In 27th USENIX Security Symposium
(USENIX Security 18).

[13] Rita Mayer-Sommer. 2000. Smartly Analyzing the Simplicity and the
Power of Simple Power Analysis on Smartcards. In Cryptographic
Hardware and Embedded Systems - CHES 2000, Second International
Workshop, Worcester, MA, USA, August 17-18, 2000, Proceedings (Lecture
Notes in Computer Science, Vol. 1965). Springer, 78–92. hps://doi.org/
10.1007/3-540-44499-8_6

[14] Marcelo Orenes-Vera, Hyunsung Yun, Nils Wisto, Gernot Heiser,
Luca Benini, David Wentzla, and Margaret Martonosi. 2023. AutoCC:
Automatic Discovery of Covert Channels in Time-Shared Hardware.
In Proceedings of the 56th Annual IEEE/ACM International Symposium
on Microarchitecture (Toronto, ON, Canada) (MICRO ’23). Association
for Computing Machinery, New York, NY, USA, 871–885. hps://doi.
org/10.1145/3613424.3614254

[15] Charles Papon. 2024. VexRiscv. hps://github.com/SpinalHDL/
VexRiscv. Accessed: 2024-08-16.

[16] Raspberry Pi Ltd. 2024. RP2040 Datasheet. hps://
datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf Revision
576cee3-clean, retrieved at 2024-08-16.

[17] Federico Reghenzani, Giuseppe Massari, and William Fornaciari. 2019.
The Real-Time Linux Kernel: A Survey on PREEMPT_RT. ACMComput.
Surv. 52, 1, Article 18 (feb 2019), 36 pages. hps://doi.org/10.1145/
3297714

[18] Ryan Torok and Amit Levy. 2023. Only Pay for What You Leak: Lever-
aging Sandboxes for a Minimally Invasive Browser Fingerprinting
Defense. In 2023 IEEE Symposium on Security and Privacy (SP). 1023–
1040. hps://doi.org/10.1109/SP46215.2023.10179385

[19] Yingchen Wang, Riccardo Paccagnella, Elizabeth Tang He, Hovav
Shacham, Christopher W. Fletcher, and David Kohlbrenner. 2022.
Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing
Attacks on x86. In 31st USENIX Security Symposium (USENIX Security
22). USENIX Association, Boston, MA, 679–697. hps://www.usenix.
org/conference/usenixsecurity22/presentation/wang-yingchen

[20] Nils Wisto, Moritz Schneider, Frank K. Gürkaynak, Luca Benini, and
Gernot Heiser. 2021. Microarchitectural Timing Channels and their
Prevention on an Open-Source 64-bit RISC-V Core. In 2021 Design,
Automation & Test in Europe Conference & Exhibition (DATE). 627–632.
hps://doi.org/10.23919/DATE51398.2021.9474214

[21] WITTENSTEIN High Integrity Systems Ltd. 2024. SafeRTOS. hps:
//www.highintegritysystems.com/safertos/. Accessed: 2024-07-01.

[22] Zephyr Project Contributors. 2024. The Zephyr Project. hps://www.
zephyrproject.org/. Accessed: 2024-07-03.

[23] Rui Zhang, Xiaojun Su, Jianping Wang, Cong Wang, Wenyin Liu, and
Rynson W. H. Lau. 2015. On Mitigating the Risk of Cross-VM Covert
Channels in a Public Cloud. IEEE Trans. Parallel Distrib. Syst. 26, 8 (aug
2015), 2327–2339. hps://doi.org/10.1109/TPDS.2014.2346504

[24] Ziqiao Zhou, Yizhou Shan, Weidong Cui, Xinyang Ge, Marcus Peinado,
and Andrew Baumann. 2023. Core slicing: closing the gap between
leaky condential VMs and bare-metal cloud. In 17th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 23).
USENIX Association, Boston, MA, 247–267. hps://www.usenix.org/
conference/osdi23/presentation/zhou-ziqiao

22


