BRIDGE: A Leak-Free Hardware-Software
Architecture for Parallel Embedded Systems

Gongqi Huang Leon Schuermann Amit Levy

=¥ Princeton University

Nov 03, 2024

Embedded Devices are Ubiquitous
« Personal medical devices

« Industrial automation

« Hardware root of trust

Embedded Devices are Ubiquitous
« Personal medical devices

« Industrial automation

« Hardware root of trust

As they handle increasingly sensitive data, developers must uphold
both functional safety and security

Changed Environment, New System Architecture
« Split application into multiple security domains

» E.g., Medical device: sensor + wireless
o In practice, well-established techniques are used

» Process abstraction

» Virtual memory

» Language-level isolation

Changed Environment, New System Architecture
o Split application into multiple security domains

» E.g., Medical device: sensor + wireless
o In practice, well-established techniques are used

» Process abstraction

» Virtual memory

» Language-level isolation

Such approaches are good at enforcing functional safety but less
effective in maintaining security due to timing channels

Timing Channels Subverts Security

 Exploits timing variations due to shared state
» Fundamentally breaks the security guarantee
» Mitigations are whack-a-mole

« More and more timing channels are disclosed!

Timing Chan
 Exploits timing
» Fundamental
» Mitigations 3
« More and more

Meltdown: Reading Kernel Memory from User Space

Moritz Lipp', Michael Schwarz', Daniel Gruss', Thomas Prescher?,
Werner Haas?, Anders Fogh?, Jann Horn*, Stefan Mangard',
Paul Kocher®, Daniel Genkin®®, Yuval Yarom’, Mike Hamburg®
' Graz University of Technology, >Cyberus Technology GmbH,

3G-Data Advanced Analytic

Sinde

(www.paulk

, *Google Project Zero,

her.com), ®University of

TUniversity of Adelaide & Data61, Rambus, Cryptography Research Division

Abstract

The security of computer systems fundamentally relies
on memory isolation, e.g.. kernel address ranges are
marked as non-accessible and are protected from user
access. In this paper, we present Meltdown. Meltdown
exploits side effects of out-of-order execution on mod-
em processors to read arbitrary kernel-memory locations
including personal data and passwords. Out-of-order
an indispensable performance feature and
present in a wide range of modern processors. The attack
is independent of the operating system, and it does not
rely on any software vulnerabilities. Meltdown breaks
all security guarantees provided by address space isola-
tion as well as paravirtualized environments and, thus,
every security mechanism building upon this foundation
On affected systems, Meltdown enables an adversary to
read memory of other processes or virtual machines in
the cloud without any permis
ing millions of customers and virtually every
personal computer. We show that the KAISER defense
mechanism for KASLR has the important (but inadver-
tent) side effect of impeding Meltdown. We stress that
KAISER must be deployed immediately to prevent large-
scale exploitation of this severe information leakage.

execution is

]

1 Introduction

A central security feature of today’s operating systems
is memory isolation. Operating systems ensure that user
programs cannot access cach other’s memory or kernel
memory. This isolation is a cornerstone of our computing
environments and allows running multiple applications at
the same time on personal devices or executing processes
of multiple users on a single machine in the cloud.

On modern processors, the isolation between the ker-
nel and user processes is typically realized by a supervi-

?Work was partially done while the author was affiliated to Univer-
sity of Pennsylvania and University of Maryland

sor bit of the processor that defines whether a memory
page of the kernel can be accessed or not. The basic
idea is that this bit can only be set when entering kernel
code and it s cleared when switching (o user processes.
This hardware feature allows operating systems to map
the kernel into the address space of every process and
to have very efficient transitions from the user process
o the kernel, e.g., for interrupt handling. Consequently,
in practice, there is no change of the memory mapping
when switching from a user process to the kernel.

In this work, we present Meltdown'®. Meltdown is
anovel attack that allows overcoming memory isolation
completely by providing a simple way for any user pro-
cess to read the entire kernel memory of the machine it
executes on, including all physical memory mapped in
the kernel region. Meltdown does not exploit any soft-
ware vulnerability, i.e., it works on all major operating
systems. Instead, Meltdown exploits side-channel infor-
mation available on most modern processors, e.g.. mod-
emn Intel microarchitectures since 2010 and potentially
on other CPUs of other vendors.

While side-channel attacks typically require very spe-
cific knowledge about the target application and are tai-
lored to only leak information about its secrets, Melt-
down allows an adversary who can run code on the vul-
nerable processor to obtain a dump of the entire kernel
address space, including any mapped physical memory.
The root cause of the simplicity and strength of Melt-
down are side effects caused by out-of-order execution.

Out-of-order execution is an important performance
feature of today’s processors in order to overcome laten-
cies of busy execution units, ¢.g., a memory fetch unit
needs to wait for data arrival from memory. Instead of
stalling the execution, modern processors run operations

19Using the practice of responsible disclosure, disjoint groups of au-
thors of this paper provided preliminary versions of our results to par-
tially overlapping groups of CPU vendors and other affected compa-
nies. In coordination with industry, the authors partcipated in an em-
bargo of the results. Melidown is documented under CVE-2017-57

rity
state
nrantee

losed!

Timing Chan
 Exploits timing
» Fundamental
» Mitigations 3
« More and more

Spectre Attacks: Exploiting Speculative Execution

Paul Kocher!, Jann Hom2, Anders Fogh?, Daniel Genkin®,

Daniel Gruss®, Werner Haas®,
Stefan Mangard®, Thomas Prescher®

Mike Hamburg?, Moritz Lipp®,
. Michael Schwarz®, Yuval Yarom®

! Independent (www.paulkocher.com), > Google Project Zero,
3 G DATA Advanced Analytics, * University of Pennsylvania and University of Maryland,
5 Graz University of Technology, ¢ Cyberus Technology,
7 Rambus, Cryptography Research Division, ® University of Adelaide and Data61

Abstract—Modern processors use branch prediction and spec-
ulative exceution to maximize performance. For example, if the
destination of a branch depends on a memory value that is in the
process of being read, CPUs will try to guess the destination and
attempt to execute ahead. When the memory value finally arrives,
the CPU either discards or commits the speculative computation.
Speculative logic is unfaithful in how it executes, can access the
victim’s memory and registers, and can perform operations with
measurable side effects.

Spectre attacks involve ing a vietim to speculatively
perform operations that wmll(l not occur during correct pmgram

leverage hardware vulnerabilities to leak sensitive information.
Attacks of the latter type include microarchitectural attacks
exploiting cache timing [8, 30, 48, 52, 55, 69, 74], branch
prediction history [1. 2], branch target buffers [14, 44] or open
DRAM rows [56]. Software-based techniques have also been
used to mount fault attacks that alter physical memory [39] or
internal CPU values [65].

Several microarchitectural design techniques have facilitated
the increase in processor speed over the past decades. One such

execution and which leak the victim’
o Side channel to the adsersary. This paper describes practical
attacks that combine methodology from side channel attacks,
fault attacks, and return-oriented programming that can read
arbitrary memory from the More broadly, the
paper shows that speculative execution implementations violate
the security assumptions underpinning numerous software secu-
ity mechanisms, including operating system proces separation,
I

)

sures to cache timing and side-channel ttacke, These attacks
represent a serious threat to actual systems since vulnerable
speculative exccution capabilities are found in microprocessors
from Intel, AMD, and ARM that are used in billions of devices.

‘While makeshift processor-specific countermeasures are possi-
ble in some cases, sound solutions will require fixes to processor
designs as well as updates to instruction set architectures (ISAs)
to give hardware arclulecls and software developers a common

state CP!

s to
tions are (and are |ml) permmed to leak.
1. INTRODUCTION

Computations performed by physical devices often leave
observable side effects beyond the computation’s nominal
outputs. Side-channel attacks focus on exploiting these side
effects to extract otherwise-unavailable secret information.
Since their introduction in the late 90's [43], many physical
effects such as power consumption [41, 42], electromagnetic
radiation [58], or acoustic noise [20] have been leveraged to
extract cryptographic keys as well as other secrets.

Physical side-channel attacks can also be used to extract
secret information from complex devices such as PCs and
mobile phones [21. 22]. However, because these devices
often execute code from a potentially unknown origin, they
face additional threats in the form of software-based attacks,
which do not require external measurement equipment. While
some attacks exploit software vulnerabilities (such as buffer
overflows [5] or double-free errors [12]), other software attacks

is execution, which is widely used
to increase performance and involves having the CPU guess
likely future execution directions and prematurely execute
instructions on these paths. More specifically, consider an
example where the program’s control flow depends on an
uncached value located in external physical memory. As this
memory is much slower than the CPU, it often takes several
hundred clock cycles before the value becomes known. Rather
than wasting these cycles by idling, the CPU attempts to guess
the direction of control flow, saves a checkpoint of its register
state, and proceeds to speculatively execute the program on the
guessed path. When the value eventually arrives from memory,
the CPU checks the correctness of its initial guess. If the
guess was wrong, the CPU discards the incorrect speculative
exceution by reverting the register state back to the stored

kpoint, resulting in to idling.
However, if the guess was correct, the speculative execution
results are committed. yielding a significant performance gain
as useful work was accomplished during the delay.

From a security perspective, speculative execution involves
exccuting a program in possibly incorrect ways. However,
because CPUs are designed to maintain functional correctness
by reverting the results of incorrect speculative executions to
their prior states, these errors were previously assumed (o be
safe

A. Our Results

In this paper, we analyze the security implications of such
incorrect speculative execution. We present a class of microar-
chitectural attacks which we call Spectre attacks. At a high
level, Spectre attacks trick the processor into speculatively
exceuting instruction sequences that should not have been
exccuted under correct program execution. As the effects of
these instructions on the nominal CPU state are eventually

ite
antee

sed!

Timing Chan
 Exploits timing
» Fundamental
» Mitigations 3
« More and more

EUCLEAK
Side-Channel Attack on the YubiKey 5 Series

(Revealing and Breaking Infineon ECDSA Tmplementation on the Way)

Thomas ROCHE

NinjaLab, Montpellier, France
thomas@ninjalab.io

September 3", 2024

Timing Chan
 Exploits timing
» Fundamental
» Mitigations 3
« More and more

ARTIFACT ARTIFACT
EVALUATED

e

GoFetch: Breaking Constant-Time Cryptographic Implementations
Using Data Memory-Dependent Prefetchers

BoruChen Yingchen Wang ~ Pradyumna Shome Christopher W. Fletcher
vuc

ur UT Austin Georgia Tech UC Berkeley
David Kohlbrenner Riccardo Paccagnella Daniel Genkin
University of Washington Carnegie Mellon University Georgia Tech

Abstract

Microarchitectural side-channel attacks have shaken the foun-
dations of modern processor design. The cornerstone defen:
against these attacks has been to ensure that security-critical
programs do not use secret-dependent data as addresses. Put
simply: do not pass secrets as addresses to, e.g.. data memory
instructions. Yet, the discovery of data memory-dependent
prefetchers (DMPs)—which turn program data into addresses
directly from within the memory system—calls into question
whether this approach will confinue to remain secure.

This paper shows that the security threat from DMPs is
significantly worse than previously thought and demonstrates
the first end-to-end attacks on security-critical software using
the Apple m-series DMP. Undergirding our attacks is a new
understanding of how DMPs behave which shows, among
other things, that the Apple DMP will activate on behalf of
any victim program and attempt to “leak” any cached data
that resembles a pointer. From this understanding, we de-
sign a new type of chosen-input attack that uses the DMP to
perform end-to-end key extraction on popular constant-time
implementations of classical (OpenSSL Diffie-Hellman Key
Exchange, Go RSA decryption) and post-quantum cryptogra-
phy (CRYSTALS-Kyber and CRYSTALS-Dilithium).

1 Introduction

For over a decade, modern processors have faced a myriad
of microarchitectural side-channel attacks, e.g.. through the
caches [63,91], TLBs [42,78, 821, branch predictors [6,35],
on-chip interconnects [31, 64, 85], memory management
units [43, 50, 81, speculative execution [51, 54], voltage-
frequency scaling [77,87,88] and more.

The most prominent class of these attacks occurs when
the program’s memory access pattern becomes dependent on
secret data. For example, cache and TLB side-channel attacks

the program’s instruction memory access pattern. This has led
to the development of a wide range of defenses—including
the ubiquitous constant-time programming model [52,61],
information flow-based tracking [41,79,94], and mor
of which seck to prevent secret data from being used as
address to memory/control-flow instructions.

Recently, however, Augury [83] demonstrated that Apple
n-series CPUs undermine this programming model by intro-
ducing a Data Memory-dependent Prefetcher (DMP) that will
attempt to prefetch addresses found in the contents of pro-
gram memory. Thus, in theory, Apple’s DMP leaks memory
contents via cache side channels, even if that memory is never
passed as an address to a memory/control-flow instruction.

Despite the Apple DMP's novel leakage capabilities, its
restrictive behavior has prevented it from being used in attacks.
In particular, Augury reported that the DMP only activates
in the presence of a rather idiosyncratic program memory
access pattern (where the program streams through an array
of pointers and architecturally dereferences those pointers).
This access pattern is not typically found in security critical
software such as side-channel hardened constant-time code—
hence making that code impervious to leakage through the
DMP. With the DMP’s full security implications unclear, in
this paper we address the following questions:

Do DMPs create a critical security threat to high-value
software? Can attacks use DMPs 1o bypass side-channel
such as c

1.1 Our Contribution

‘This paper answers the above questions in the affirmative,
showing how Apple’s DMP implementation poses severe
risks to the constant-time coding paradigm. In particular, we
demonstrate end-to-end key extraction attacks against four

f-the-art cryptographic i all deploying

arise when the program’s data memory access pattern be-
comes secret dependent. Other attacks, e.g., those monitoring
on-chip interconnects, can be viewed similarly with respect to

Analyzing DMP Activation Patterns. We start by re-
examining the findings in Augury [83], here we find that
Augury’s analysis of the DMP activation model was overly

Timing Chan
 Exploits timing
» Fundamental

» Mitigations 3

l»
ARTIFACT ARTIFACT ARTIFACT
o | | & o
G| | gy [7

GoFetch: Breaking Constant-Time Cryptographic Implementations
Using Data Memory-Dependent Prefetchers

Boru Chen Yingchen Wang Pradyumna Shome Christopher W. Fletcher
vluc UT Austin Georgia Tech UC Berkeley ‘
David Kohlbrenner Riccardo Paccagnella Daniel Genkin
University of Washington Carnegie Mellon University Georgia Tech
Abstract the program’s instruction memory access pattern. This has led

0 the development of a wide range of defenses—including

the ubiguitous constanttime programming model [52.61],

Microarchitectural side-channel attacks have shaken the foun-

« More and mdmicrokerneldude

cybersecurity.
security, time
protection

GoFetch: Will people ever learn?

Last month researchers reported that the data memory-dependent prefetcher (DMP)
on Apple M1 chips can be used to break encryption. (And there are indications that
similar attacks might be possible on Intel silicon.)

units [43, 50, 81], speculative exccution [51, 541, voltage-
frequency scaling [77,87,88] and more.

The most prominent class of these attacks occurs when
the program’s memory access pattern becomes dependent on
secret data. For example, cache and TLB side-channel attacks

showing how Apple’s DMP implementation poses severe
risks to the constant-time coding paradigm. In particular, we
demonstrate end-to-end key extraction attacks against four

cryptographic i all deploying

arise when the program’s data memory access pattern be-
comes secret dependent. Other attacks, e.g.. those monitoring
on-chip interconnects, can be viewed similarly with respect to

Analyzing DMP Activation Patterns. We start by re-
examining the findings in Augury [83], here we find that
Augury’s analysis of the DMP activation model was overly

11

Timing-Safe Isolation in Time-Shared Systems

o Lattice scheduler in the VAX/VMM security kernel’
» Resetting cache state when switching to another process
» Fixed time slot for each process

Flush cache

@ Context switch @ Context switch @

'W.-M. Hu. 1992. Lattice scheduling and covert channels. In Proceedings 1992 IEEE Computer Society Symposium

on Research in Security and Privacy. 52-61.

12

Timing-Safe Isolation in Time-Shared Systems
 Time protection in sel.4 microkernel?
» A set of mechanisms to maintain timing-safety across domains

— Kernel text and data partition, deterministic data sharing, etc.

@ Reset shared HW state @
Q Domain switch @

zQian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser. 2019. Time Protection: The Missing OS Abstraction.
EuroSys '19. Association for Computing Machinery, New York, NY, USA, Article 1, 17 pages.

13

Leak-Freeness
 Leak-freeness considers timing channels
 Leak-freeness respects security policy

» Any violation of such policy is a leak, otherwise not

14

Leak-Freeness
 Leak-freeness considers timing channels
 Leak-freeness respects security policy

» Any violation of such policy is a leak, otherwise not

Mutually distrusted

15

Leak-Freeness
 Leak-freeness considers timing channels
 Leak-freeness respects security policy

» Any violation of such policy is a leak, otherwise not

o

Mutually distrusted High—low relation

16

Leak-Free Time-Shared System

o A time-shared system that ensures no leak across security domains

17

Existing Leak-Free Time-Shared Systems
Compromise Responsiveness

domye dom,q

Domain switch

R/_J

dom,4 is unresponsive

18

BRrIDGE: Exploring Leak-Free, Parallel Systems

A hardware-software architecture design
» Executing multiple domains simultaneously
— Domains can remain responsive
» Enabling explicit communication without additional leakage
— Practical to support real applications

19

Naive Leak-Free Parallel System

« Shared-nothing multi-core architecture
» Each security domain runs in a completely independent and
isolated slice of machine

20

Naive Leak-Free Parallel System
« Shared-nothing multi-core architecture
» Each security domain runs in a completely independent and
isolated slice of machine

Overly restrictive — practical systems allow declassification in a

controlled manner (e.g., encryption, aggregation)

21

BripGE Leak-Free Parallel System

« Shared-nothing multi-core architecture

» Each security domain runs in a completely independent and
isolated slice of machine

+ Extended with a single, leak-free communication channel between
two machine slices

22

BripGE Leak-Free Parallel System

« Shared-nothing multi-core architecture

» Each security domain runs in a completely independent and
isolated slice of machine

+ Extended with a single, leak-free communication channel between
two machine slices

Ensures leak-freeness by construction

23

BRIDGE’s Inter-Core Message Passing Mechanism

 Use a shared resource + a signaling mechanism

24

BRIDGE’s Inter-Core Message Passing Mechanism

« Use a shared resource + a signaling mechanism
carry message

25

BRIDGE’s Inter-Core Message Passing Mechanism

« Use a shared resource + a signaling mechanism
carry message deliver message

+ arbitrate parallel accesses

26

BRIDGE’s Inter-Core Message Passing Mechanism

 Use a shared resource + a signaling mechanism

A request—response communication scheme

>

27

BRIDGE’s Inter-Core Message Passing Mechanism

 Use a shared resource + a signaling mechanism

« A request—response communication scheme
» Initially, core;,, owns the resource

28

BRIDGE’s Inter-Core Message Passing Mechanism

 Use a shared resource + a signaling mechanism

. A request—response communication scheme

» Ccorey,, initiates the communication

29

BRIDGE’s Inter-Core Message Passing Mechanism

 Use a shared resource + a signaling mechanism

« A request—response communication scheme

> COrejoy polls the response from coreyg,

30

BRIDGE’s Inter-Core Message Passing Mechanism

« Use a shared resource + a signaling mechanism

« A request—response communication scheme
» Critical sections can create backchannels?

Critical section — secret-dependent timing!

3Critical sections are unavoidable: for instance, Linux’s PREEMPT RT FULL model does not allow

reentrance in top half interrupt handlers.

31

BRIDGE’s Inter-Core Message Passing Mechanism

« Use a shared resource + a signaling mechanism

« A request—response communication scheme

» Worst case execution time (WCET) over all critical sections

Wait time guarantees
ownership is reclaimed

32

BRIDGE System Architecture: Hardware
« Shared-nothing multi-core architecture + a shared RAM block

[Low-Secrecy 1 ‘(High-Secrecy
CPU Core J Inter-Core Interrupt L CPU Core

\ Bus Arbiter /

Wireless Private Shared Private Heart Rate
Radio RAM RAM RAM Monitor

A simplified BRIDGE hardware architecture

33

BRIDGE’s Hardware Constraints are Practical

« Raspberry Pi RP2040 ARM Cortex-M0+ SoC
» Two CPU cores

» Most peripherals have a dedicated upstream port per core
» Inter-core interrupts can take the highest priority

34

BRIDGE System Architecture: Software

o Shared-nothing multi-kernel architecture + a leak-free channel
» Userspace processes can always be preempted
» Kernel instance must handle inter-core signal immediately*
 No requirements regarding kernel-local policy and mechanism

4 . . .
Or after returning from any currently entered critical section.

33

Current State
« Prototype
» Extending Tock OS kernel to a multi-kernel architecture (approx.
2300 LOC)
» Inter-core messaging mechanism (approx. 300 LOC)
 In progress
» Cross-kernel IPC support
» BRIDGE SoC with two VexRiscv CPU cores
» WCET analysis

36

Current State
« Prototype

» Extending Tock OS kernel to a multi-kernel architecture (approx.
2300 LOC)

» Inter-core messaging mechanism (approx. 300 LOC)
 In progress

» Cross-kernel IPC support

» BRIDGE SoC with two VexRiscv CPU cores

» WCET analysis

Thank you!

37

	Bridge: A Leak-Free Hardware-Software Architecture for Parallel Embedded Systems
	Embedded Devices are Ubiquitous
	Changed Environment, New System Architecture
	Timing Channels Subverts Security
	Timing-Safe Isolation in Time-Shared Systems
	and
	Existing Leak-Free Time-Shared Systems Compromise Responsiveness
	Bridge: Exploring Leak-Free, Parallel Systems
	Leak-Free Parallel System
	Bridge's Inter-Core Message Passing Mechanism
	Bridge System Architecture: Hardware
	Bridge's Hardware Constraints are Practical
	Bridge System Architecture: Software
	Current State

