
Bridge: A Leak-Free Hardware-Software
Architecture for Parallel Embedded Systems

Gongqi Huang Leon Schuermann Amit Levy

 Princeton University

Nov 03, 2024

1



Embedded Devices are Ubiquitous
• Personal medical devices
• Industrial automation
• Hardware root of trust
• …

2



Embedded Devices are Ubiquitous
• Personal medical devices
• Industrial automation
• Hardware root of trust
• …

As they handle increasingly sensitive data, developers must uphold
both functional safety and security

3



Changed Environment, New System Architecture
• Split application into multiple security domains

‣ E.g., Medical device: sensor + wireless
• In practice, well-established techniques are used

‣ Process abstraction
‣ Virtual memory
‣ Language-level isolation

4



Changed Environment, New System Architecture
• Split application into multiple security domains

‣ E.g., Medical device: sensor + wireless
• In practice, well-established techniques are used

‣ Process abstraction
‣ Virtual memory
‣ Language-level isolation

Such approaches are good at enforcing functional safety but less
effective in maintaining security due to timing channels

5



Timing Channels Subverts Security
• Exploits timing variations due to shared state

‣ Fundamentally breaks the security guarantee
‣ Mitigations are whack-a-mole

• More and more timing channels are disclosed!

6



Timing Channels Subverts Security
• Exploits timing variations due to shared state

‣ Fundamentally breaks the security guarantee
‣ Mitigations are whack-a-mole

• More and more timing channels are disclosed!

7



Timing Channels Subverts Security
• Exploits timing variations due to shared state

‣ Fundamentally breaks the security guarantee
‣ Mitigations are whack-a-mole

• More and more timing channels are disclosed!

8



Timing Channels Subverts Security
• Exploits timing variations due to shared state

‣ Fundamentally breaks the security guarantee
‣ Mitigations are whack-a-mole

• More and more timing channels are disclosed!

9



Timing Channels Subverts Security
• Exploits timing variations due to shared state

‣ Fundamentally breaks the security guarantee
‣ Mitigations are whack-a-mole

• More and more timing channels are disclosed!

10



Timing Channels Subverts Security
• Exploits timing variations due to shared state

‣ Fundamentally breaks the security guarantee
‣ Mitigations are whack-a-mole

• More and more timing channels are disclosed!

11



Timing-Safe Isolation in Time-Shared Systems
• Lattice scheduler in the VAX/VMM security kernel¹

‣ Resetting cache state when switching to another process
‣ Fixed time slot for each process

¹W.-M. Hu. 1992. Lattice scheduling and covert channels. In Proceedings 1992 IEEE Computer Society Symposium
on Research in Security and Privacy. 52–61.

p₀ p₁ p₂

Flush cache

Context switch Context switch

12



Timing-Safe Isolation in Time-Shared Systems
• Time protection in seL4 microkernel²

‣ A set of mechanisms to maintain timing-safety across domains
– Kernel text and data partition, deterministic data sharing, etc.

²Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser. 2019. Time Protection: The Missing OS Abstraction.
EuroSys ’19. Association for Computing Machinery, New York, NY, USA, Article 1, 17 pages.

p₀

p₁

…
p₂

p₃

…

Reset shared HW state

Domain switch

13



Leak-Freeness and Leak-Free Time-Shared System
• Leak-freeness considers timing channels
• Leak-freeness respects security policy

‣ Any violation of such policy is a leak, otherwise not

14



Leak-Freeness and Leak-Free Time-Shared System
• Leak-freeness considers timing channels
• Leak-freeness respects security policy

‣ Any violation of such policy is a leak, otherwise not

dom₀ dom₁

Mutually distrusted

15



Leak-Freeness and Leak-Free Time-Shared System
• Leak-freeness considers timing channels
• Leak-freeness respects security policy

‣ Any violation of such policy is a leak, otherwise not

dom₀ dom₁

Mutually distrusted

domₕ domₗ

High—low relation

16



Leak-Freeness and Leak-Free Time-Shared System
• Leak-freeness considers timing channels
• Leak-freeness respects security policy

‣ Any violation of such policy is a leak, otherwise not
• A time-shared system that ensures no leak across security domains

17



Existing Leak-Free Time-Shared Systems
Compromise Responsiveness

p₁

p₀

…

domblue

p₃

p₂

…

domred

domred is unresponsive

Domain switch

18



Bridge: Exploring Leak-Free, Parallel Systems
• A hardware-software architecture design

‣ Executing multiple domains simultaneously
– Domains can remain responsive

‣ Enabling explicit communication without additional leakage
– Practical to support real applications

19



Naïve Leak-Free Parallel System
• Shared-nothing multi-core architecture

‣ Each security domain runs in a completely independent and
isolated slice of machine

20



Naïve Leak-Free Parallel System
• Shared-nothing multi-core architecture

‣ Each security domain runs in a completely independent and
isolated slice of machine

Overly restrictive — practical systems allow declassification in a
controlled manner (e.g., encryption, aggregation)

21



Bridge Leak-Free Parallel System
• Shared-nothing multi-core architecture

‣ Each security domain runs in a completely independent and
isolated slice of machine

+ Extended with a single, leak-free communication channel between
two machine slices

22



Bridge Leak-Free Parallel System
• Shared-nothing multi-core architecture

‣ Each security domain runs in a completely independent and
isolated slice of machine

+ Extended with a single, leak-free communication channel between
two machine slices

Ensures leak-freeness by construction

23



Bridge’s Inter-Core Message Passing Mechanism
• Use a shared resource + a signaling mechanism
•

24



Bridge’s Inter-Core Message Passing Mechanism
• Use a shared resource + a signaling mechanism
• carry message

25



Bridge’s Inter-Core Message Passing Mechanism
• Use a shared resource + a signaling mechanism
• carry message deliver message

+ arbitrate parallel accesses

26



Bridge’s Inter-Core Message Passing Mechanism
• Use a shared resource + a signaling mechanism
• A request—response communication scheme

‣

corelow

corehigh

27



Bridge’s Inter-Core Message Passing Mechanism
• Use a shared resource + a signaling mechanism
• A request—response communication scheme

‣ Initially, corelow owns the resource

corelow

corehigh

28



Bridge’s Inter-Core Message Passing Mechanism
• Use a shared resource + a signaling mechanism
• A request—response communication scheme

‣ corelow initiates the communication

corelow

corehigh

Non-secret-
dependent timing

29



Bridge’s Inter-Core Message Passing Mechanism
• Use a shared resource + a signaling mechanism
• A request—response communication scheme

‣ corelow polls the response from corehigh

corelow

corehigh

Non-secret-
dependent timing

30



Bridge’s Inter-Core Message Passing Mechanism
• Use a shared resource + a signaling mechanism
• A request—response communication scheme

‣ Critical sections can create backchannels³

³Critical sections are unavoidable: for instance, Linux’s PREEMPT_RT_FULL model does not allow
reentrance in top half interrupt handlers.

corelow

corehigh

Non-secret-
dependent timing

Critical section – secret-dependent timing!

31



Bridge’s Inter-Core Message Passing Mechanism
• Use a shared resource + a signaling mechanism
• A request—response communication scheme

‣ Worst case execution time (WCET) over all critical sections

corelow

corehigh

Wait time guarantees
ownership is reclaimedNon-secret-

dependent timing

32



Bridge System Architecture: Hardware
• Shared-nothing multi-core architecture + a shared RAM block

A simplified Bridge hardware architecture

33



Bridge’s Hardware Constraints are Practical
• Raspberry Pi RP2040 ARM Cortex-M0+ SoC

‣ Two CPU cores
‣ Most peripherals have a dedicated upstream port per core
‣ Inter-core interrupts can take the highest priority

34



Bridge System Architecture: Software
• Shared-nothing multi-kernel architecture + a leak-free channel

‣ Userspace processes can always be preempted
‣ Kernel instance must handle inter-core signal immediately⁴

• No requirements regarding kernel-local policy and mechanism

⁴Or after returning from any currently entered critical section.

35



Current State
• Prototype

‣ Extending Tock OS kernel to a multi-kernel architecture (approx.
2300 LOC)

‣ Inter-core messaging mechanism (approx. 300 LOC)
• In progress

‣ Cross-kernel IPC support
‣ Bridge SoC with two VexRiscv CPU cores
‣ WCET analysis

36



Current State
• Prototype

‣ Extending Tock OS kernel to a multi-kernel architecture (approx.
2300 LOC)

‣ Inter-core messaging mechanism (approx. 300 LOC)
• In progress

‣ Cross-kernel IPC support
‣ Bridge SoC with two VexRiscv CPU cores
‣ WCET analysis

Thank you!

37


	Bridge: A Leak-Free Hardware-Software Architecture for Parallel Embedded Systems
	Embedded Devices are Ubiquitous
	Changed Environment, New System Architecture
	Timing Channels Subverts Security
	Timing-Safe Isolation in Time-Shared Systems
	and
	Existing Leak-Free Time-Shared Systems Compromise Responsiveness
	Bridge: Exploring Leak-Free, Parallel Systems
	Leak-Free Parallel System
	Bridge's Inter-Core Message Passing Mechanism
	Bridge System Architecture: Hardware
	Bridge's Hardware Constraints are Practical
	Bridge System Architecture: Software
	Current State


